3.17 \(\int \frac {c+d x^3}{a+b x^3} \, dx\)

Optimal. Leaf size=145 \[ -\frac {(b c-a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{4/3}}+\frac {(b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{4/3}}-\frac {(b c-a d) \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} b^{4/3}}+\frac {d x}{b} \]

[Out]

d*x/b+1/3*(-a*d+b*c)*ln(a^(1/3)+b^(1/3)*x)/a^(2/3)/b^(4/3)-1/6*(-a*d+b*c)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)
*x^2)/a^(2/3)/b^(4/3)-1/3*(-a*d+b*c)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)/a^(1/3)*3^(1/2))/a^(2/3)/b^(4/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.412, Rules used = {388, 200, 31, 634, 617, 204, 628} \[ -\frac {(b c-a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{4/3}}+\frac {(b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{4/3}}-\frac {(b c-a d) \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} b^{4/3}}+\frac {d x}{b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^3)/(a + b*x^3),x]

[Out]

(d*x)/b - ((b*c - a*d)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(2/3)*b^(4/3)) + ((b*c -
a*d)*Log[a^(1/3) + b^(1/3)*x])/(3*a^(2/3)*b^(4/3)) - ((b*c - a*d)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^
2])/(6*a^(2/3)*b^(4/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {c+d x^3}{a+b x^3} \, dx &=\frac {d x}{b}-\frac {(-b c+a d) \int \frac {1}{a+b x^3} \, dx}{b}\\ &=\frac {d x}{b}+\frac {(b c-a d) \int \frac {1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a^{2/3} b}+\frac {(b c-a d) \int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 a^{2/3} b}\\ &=\frac {d x}{b}+\frac {(b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{4/3}}-\frac {(b c-a d) \int \frac {-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 a^{2/3} b^{4/3}}+\frac {(b c-a d) \int \frac {1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{2 \sqrt [3]{a} b}\\ &=\frac {d x}{b}+\frac {(b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{4/3}}-\frac {(b c-a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{4/3}}+\frac {(b c-a d) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{a^{2/3} b^{4/3}}\\ &=\frac {d x}{b}-\frac {(b c-a d) \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} b^{4/3}}+\frac {(b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{4/3}}-\frac {(b c-a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{4/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 129, normalized size = 0.89 \[ \frac {-(b c-a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )+6 a^{2/3} \sqrt [3]{b} d x+2 (b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-2 \sqrt {3} (b c-a d) \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{6 a^{2/3} b^{4/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^3)/(a + b*x^3),x]

[Out]

(6*a^(2/3)*b^(1/3)*d*x - 2*Sqrt[3]*(b*c - a*d)*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] + 2*(b*c - a*d)*Log
[a^(1/3) + b^(1/3)*x] - (b*c - a*d)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(2/3)*b^(4/3))

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 390, normalized size = 2.69 \[ \left [\frac {6 \, a^{2} b d x - 3 \, \sqrt {\frac {1}{3}} {\left (a b^{2} c - a^{2} b d\right )} \sqrt {\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x^{3} + 3 \, \left (-a^{2} b\right )^{\frac {1}{3}} a x - a^{2} - 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{2} + \left (-a^{2} b\right )^{\frac {2}{3}} x + \left (-a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}}}{b x^{3} + a}\right ) - \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x^{2} - \left (-a^{2} b\right )^{\frac {2}{3}} x - \left (-a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x + \left (-a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b^{2}}, \frac {6 \, a^{2} b d x + 6 \, \sqrt {\frac {1}{3}} {\left (a b^{2} c - a^{2} b d\right )} \sqrt {-\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (-a^{2} b\right )^{\frac {2}{3}} x + \left (-a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x^{2} - \left (-a^{2} b\right )^{\frac {2}{3}} x - \left (-a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x + \left (-a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)/(b*x^3+a),x, algorithm="fricas")

[Out]

[1/6*(6*a^2*b*d*x - 3*sqrt(1/3)*(a*b^2*c - a^2*b*d)*sqrt((-a^2*b)^(1/3)/b)*log((2*a*b*x^3 + 3*(-a^2*b)^(1/3)*a
*x - a^2 - 3*sqrt(1/3)*(2*a*b*x^2 + (-a^2*b)^(2/3)*x + (-a^2*b)^(1/3)*a)*sqrt((-a^2*b)^(1/3)/b))/(b*x^3 + a))
- (-a^2*b)^(2/3)*(b*c - a*d)*log(a*b*x^2 - (-a^2*b)^(2/3)*x - (-a^2*b)^(1/3)*a) + 2*(-a^2*b)^(2/3)*(b*c - a*d)
*log(a*b*x + (-a^2*b)^(2/3)))/(a^2*b^2), 1/6*(6*a^2*b*d*x + 6*sqrt(1/3)*(a*b^2*c - a^2*b*d)*sqrt(-(-a^2*b)^(1/
3)/b)*arctan(sqrt(1/3)*(2*(-a^2*b)^(2/3)*x + (-a^2*b)^(1/3)*a)*sqrt(-(-a^2*b)^(1/3)/b)/a^2) - (-a^2*b)^(2/3)*(
b*c - a*d)*log(a*b*x^2 - (-a^2*b)^(2/3)*x - (-a^2*b)^(1/3)*a) + 2*(-a^2*b)^(2/3)*(b*c - a*d)*log(a*b*x + (-a^2
*b)^(2/3)))/(a^2*b^2)]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 133, normalized size = 0.92 \[ -\frac {\sqrt {3} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, \left (-a b^{2}\right )^{\frac {2}{3}}} - \frac {{\left (b c - a d\right )} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, \left (-a b^{2}\right )^{\frac {2}{3}}} + \frac {d x}{b} - \frac {{\left (b c - a d\right )} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)/(b*x^3+a),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*(b*c - a*d)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(-a*b^2)^(2/3) - 1/6*(b*c - a*d
)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(-a*b^2)^(2/3) + d*x/b - 1/3*(b*c - a*d)*(-a/b)^(1/3)*log(abs(x - (
-a/b)^(1/3)))/(a*b)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 195, normalized size = 1.34 \[ -\frac {\sqrt {3}\, a d \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 \left (\frac {a}{b}\right )^{\frac {2}{3}} b^{2}}-\frac {a d \ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \left (\frac {a}{b}\right )^{\frac {2}{3}} b^{2}}+\frac {a d \ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \left (\frac {a}{b}\right )^{\frac {2}{3}} b^{2}}+\frac {\sqrt {3}\, c \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 \left (\frac {a}{b}\right )^{\frac {2}{3}} b}+\frac {c \ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \left (\frac {a}{b}\right )^{\frac {2}{3}} b}-\frac {c \ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \left (\frac {a}{b}\right )^{\frac {2}{3}} b}+\frac {d x}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c)/(b*x^3+a),x)

[Out]

d*x/b-1/3/b^2/(a/b)^(2/3)*ln(x+(a/b)^(1/3))*a*d+1/3/b/(a/b)^(2/3)*ln(x+(a/b)^(1/3))*c+1/6/b^2/(a/b)^(2/3)*ln(x
^2-(a/b)^(1/3)*x+(a/b)^(2/3))*a*d-1/6/b/(a/b)^(2/3)*ln(x^2-(a/b)^(1/3)*x+(a/b)^(2/3))*c-1/3/b^2/(a/b)^(2/3)*3^
(1/2)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x-1))*a*d+1/3/b/(a/b)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*
x-1))*c

________________________________________________________________________________________

maxima [A]  time = 1.08, size = 128, normalized size = 0.88 \[ \frac {d x}{b} + \frac {\sqrt {3} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {{\left (b c - a d\right )} \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {{\left (b c - a d\right )} \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)/(b*x^3+a),x, algorithm="maxima")

[Out]

d*x/b + 1/3*sqrt(3)*(b*c - a*d)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(b^2*(a/b)^(2/3)) - 1/6*(b
*c - a*d)*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(b^2*(a/b)^(2/3)) + 1/3*(b*c - a*d)*log(x + (a/b)^(1/3))/(b^2
*(a/b)^(2/3))

________________________________________________________________________________________

mupad [B]  time = 1.38, size = 123, normalized size = 0.85 \[ \frac {d\,x}{b}-\frac {\ln \left (b^{1/3}\,x+a^{1/3}\right )\,\left (a\,d-b\,c\right )}{3\,a^{2/3}\,b^{4/3}}+\frac {\ln \left (a^{1/3}-2\,b^{1/3}\,x+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d-b\,c\right )}{3\,a^{2/3}\,b^{4/3}}-\frac {\ln \left (2\,b^{1/3}\,x-a^{1/3}+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d-b\,c\right )}{3\,a^{2/3}\,b^{4/3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^3)/(a + b*x^3),x)

[Out]

(d*x)/b - (log(b^(1/3)*x + a^(1/3))*(a*d - b*c))/(3*a^(2/3)*b^(4/3)) + (log(3^(1/2)*a^(1/3)*1i - 2*b^(1/3)*x +
 a^(1/3))*((3^(1/2)*1i)/2 + 1/2)*(a*d - b*c))/(3*a^(2/3)*b^(4/3)) - (log(3^(1/2)*a^(1/3)*1i + 2*b^(1/3)*x - a^
(1/3))*((3^(1/2)*1i)/2 - 1/2)*(a*d - b*c))/(3*a^(2/3)*b^(4/3))

________________________________________________________________________________________

sympy [A]  time = 0.44, size = 71, normalized size = 0.49 \[ \operatorname {RootSum} {\left (27 t^{3} a^{2} b^{4} + a^{3} d^{3} - 3 a^{2} b c d^{2} + 3 a b^{2} c^{2} d - b^{3} c^{3}, \left (t \mapsto t \log {\left (- \frac {3 t a b}{a d - b c} + x \right )} \right )\right )} + \frac {d x}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c)/(b*x**3+a),x)

[Out]

RootSum(27*_t**3*a**2*b**4 + a**3*d**3 - 3*a**2*b*c*d**2 + 3*a*b**2*c**2*d - b**3*c**3, Lambda(_t, _t*log(-3*_
t*a*b/(a*d - b*c) + x))) + d*x/b

________________________________________________________________________________________